Brain Computer Interface for Neurodegenerative Person Using Electroencephalogram
نویسندگان
چکیده
منابع مشابه
Control of a 2-DoF robotic arm using a P300-based brain-computer interface
In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...
متن کاملNeural network classification of autoregressive features from electroencephalogram signals for brain-computer interface design.
In this paper, we have designed a two-state brain-computer interface (BCI) using neural network (NN) classification of autoregressive (AR) features from electroencephalogram (EEG) signals extracted during mental tasks. The main purpose of the study is to use Keirn and Aunon's data to investigate the performance of different mental task combinations and different AR features for BCI design for i...
متن کاملComparison of Different Linear Filter Design Methods for Handling Ocular Artifacts in Brain Computer Interface System
Brain-computer interfaces (BCI) record brain signals, analyze and translate them into control commands which are relayed to output devices that carry out desired actions. These systems do not use normal neuromuscular output pathways. Actually, the principal goal of BCI systems is to provide better life style for physically-challenged people which are suffered from cerebral palsy, amyotrophic l...
متن کاملClassifying Single Trail Electroencephalogram Using Gaussian Smoothened Fast Hartley Transform for Brain Computer Interface during Motor Imagery
Problem statement: Brain-Computer Interface (BCI) is a emerging research area which translates the brain signals for any motor related actions into computer understandable signals by capturing the signal, processing the signal and classifying the motor imagery. This area of work finds various applications in neuroprosthetics. Mental activity leads to changes of electrophysiological signals like...
متن کاملBrain Computer Interface using Machine Learning
This paper presents the design and development of a complete hardware and software solution for a brain computer interface (BCI). It consists of a non-intrusive multiple channel data acquisition device which captures the electrical brain wave signals and passes the data to a computer. The computer then uses signal processing and machine learning algorithms to identify patterns in the signals re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2018.2886708